Letter of Transmittal

September 28, 2015

Linda M. Hanagan. PhD, PE Structural Thesis Advisor The Pennsylvania State University Ihanagan@engr.psu.edu

Dear Dr. Hanagan,

The attached document Notebook A contains a detailed analysis of the structural loading conditions for The Health Centre in the southeastern United States. All calculations follow the applicable building codes specified by the local governing body.

Enclosed in Notebook A is a building abstract, site plans, and calculations for the gravity, snow, wind, and seismic loads. A combination of excel spreadsheets and hand calculations were used to determine the vertical and horizontal forces on the building. The appendix contains typical floor plans to further describe the loading conditions in The Health Centre.

Thank you for taking the time to review my analysis and calculations. I look forward to your comments and discussing my work with you in the future.

Regards,

Hannah N. Valentine

NOTEBOOK SUBMISSION A

THE HEALTH CENTRE

LOCATION | SOUTHEASTERN US

Hannah N Valentine STRUCTURAL OPTION | ADVISOR: DR. HANAGAN

THE HEALTH CENTRE

GENERAL INFORMATION

Location	Southeastern US
Occupancy	Healthcare
Height	166 ft
Total Levels	14 (above + below grade)
Size	450,000 SF of program space
Cost	\$168-203 million
Construction	January 2012-2016 (projected)
Project Delivery	CM At-Risk
PROJECT TEAM	
Architecture	SmithGroupJJR
Structural	Walter P. Moore
ohting/Mechanical	ccrd

Lighting/ Construction Civil/Site Wind Consultant

McCarthy Building Construction Kimley-Horn and Associates, Inc **RWDI** Consulting Engineers

ARCHITECTURE

The Health Centre is a new "core-and-shell" university hospital expansion project featuring a nine-story hospital bed tower and state-of-theart technical facilities. Inspired by the concept of lifelines, it takes architectural cues from surrounding classical campus buildings. A variety of health facilities are offered in the building, including operating rooms, an intensive care unit, emergency department, clinical facilities, and med-surg patient rooms.

STRUCTURAL SYSTEMS

- Framing...... Cast-in place concrete with one-way floor slabs are used for framing above grade. Post-tensioned twoway concrete slabs are used in the parking garage. Foundations.....Slab on grade is connected by grade beams. Below grade are cast-in-place spread footings & drilled piers.
- Lateral Concrete moment frames resist wind lateral loads. Parking garage shear walls resist seismic/soil loads.

MECHANICAL SYSTEMS

Two mechanical rooms service the building on the 5th and penthouse floors. Three large cooling towers go up to the roof. Fan coil units are used to heat the building. Custom central-station air-handling units utilizing split system air conditioners are used to cool the building.

LIGHTING/ELECTRICAL SYSTEMS

Interiors are lit with linear T8 and T5 LEDs fixtures, and energy efficient lamps. Surge protective devices were installed for low-voltage equipment. Both photoelectric switches and daylight-harvesting switching controls contribute to energy savings.

HANNAH VALENTINE | STRUCTURAL ADVISOR | DR. LINDA HANAGAN

CONSTRUCTION

Special efforts have been made to ensure a sustainable construction process. Dirt and filling material from digging the foundations was used to build a new soccer field in the community. All trees removed during the building process are scheduled to be replanted.

RENDERINGS AND INFORMATION COURTESY OF:

SMITHGROUP JJR WALTER P MOORE

Table of Contents

1	Building Abstra	act	1
2	General Inform	nation	3
	2.1 Executive	Summary	. 3
	2.2 Site Plan		4
	2.3 Reference	25	5
3	Gravity Loads.		5
	3.1 Roof Load	ls	5
	3.1.1	Dead Loads	7
	3.1.2	Live Loads	7
	3.1.3	Snow Loads	. 8
	3.2 Floor Load	ls	. 11
	3.2.1	Dead Loads	12
	3.2.2	Live Loads	14
	3.2.3	Non-typical Loads	15
	3.3 Perimeter	Loads	16
4	Wind Loads		18
	4.1 Perpendic	cular Loads	19
	4.2 Parallel Lo	bads	21
	4.3 Parapet L	pads	. 23
	4.4 Summary	and Hand Calculations	24
5	Seismic Loads.		32
6	Appendix A		38

2 | General Information

2.1 Executive Summary

The Health Centre is a 450,000 square foot university hospital expansion project located in the southeastern United States. Located adjacent to existing hospital facility 'Clinic B,' this nine story L-shaped building is connected by two bridges to the surrounding campus. Demand for new, state-of-the-art medical technology, additional research space, and extra hospital beds prompted the design and construction the Health Centre. At a height of 163 feet, the Health Centre will be by far the tallest building in the surrounding area when its construction is complete in 2016.

As a nod to the heritage and character of the surrounding university campus, The Health Centre takes its architectural cues from classical Italian and contemporary sources. Façade materials used on the building include stucco, metal panels, and a glass curtain wall. A green roof and four story underground parking garage contribute towards its goal of LEED silver certification. This building was designed as a "core-and shell," necessitating a structural consideration for flexibility of spaces and future expansion.

The structure of the Health Centre is mainly cast-in-place concrete on drilled piers and spread footings. Its floor system in the hospital bed tower consists of cast-in-place one-way concrete slabs and beams. Concrete moment frames spread throughout the structure resist the building's lateral loads. Below grade, parking garage floor slabs consist of two-way post-tensioned concrete slabs. The parking garage has its own lateral system of concrete shear walls. Some structural steel components exist in the building, including roofing and bridges connecting to other buildings on campus.

Governing codes for the design of the Health Centre required the use of IBC 2012. However, an exemption was obtained to allow the structural design to use IBC 2006 requirements. ASCE 7-05 provides the minimum design loads for live, snow, wind, and seismic considerations. Due to the life safety importance associated with hospital structures, a conservative approach was used to determine building loads.

2.2 Site Plan

The Health Centre is located on a university campus in the southeastern United States. Adjacent to the site is 'Clinic B,' the existing hospital building. Bridges connect the hospital facilities to the surrounding campus. A new entry drive allows patients and emergency vehicles direct access to the new Health Centre. Figure 1 shows the site plans from SmithGroupJJR documents.

Terrain around the site is extremely flat. As the tallest building in the immediate area, The Health Centre will be fully impacted by wind loads.

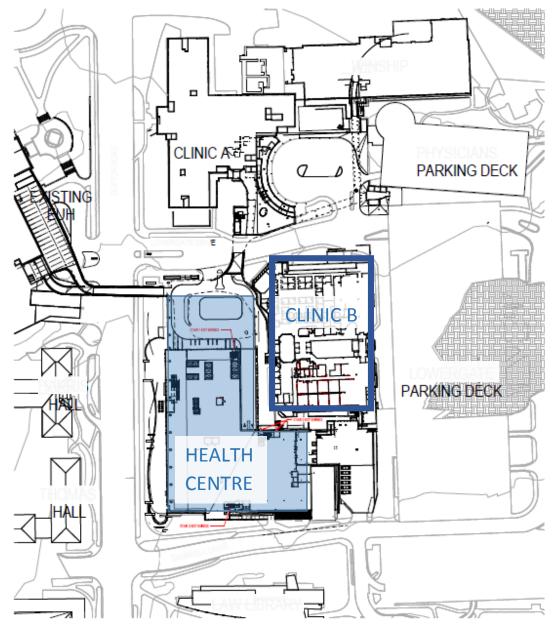


Figure 1 | Site Plan of Surrounding Area

2.3 References

The following table is a list of documents referenced during the preparation of Notebook A to determine building loads.

Organization	Reference
International Building Code	2006 International Building Code
American Society of Civil Engineers	ASCE 7-05 Minimum Design Loads for Buildings and Other
	Structures
American Concrete Institute	ACI 318 Building Code Requirements for Structural Concrete
American Institute of Steel Construction	Steel Construction Manual, 14 th Edition
United States Geological Survey	Seismic Design Maps
Penn State	Architectural Engineering Course Notes
Vulcraft	Deck Catalog
Walter P. Moore	Health Centre General Notes Sheet

Table 1 | Notebook A References

3 | Gravity Loads

This section details the building gravity loads due to dead, live, and snow, and perimeter loads. Loads were determined using structural documentation from Walter P. Moore and the references listed in the previous section. A full list of design gravity loads used by the original structural engineer may be found in Appendix A.

3.1 Roof Loads

Three roof gravity load cases exist for this building: typical concrete roof, penthouse roof, and green roof. Figures 2-4 depict the roof sections that correspond with each load case.

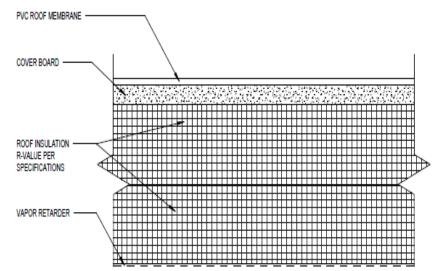


Figure 2 | Typical Concrete Roof Section (SmithGroupJJR)

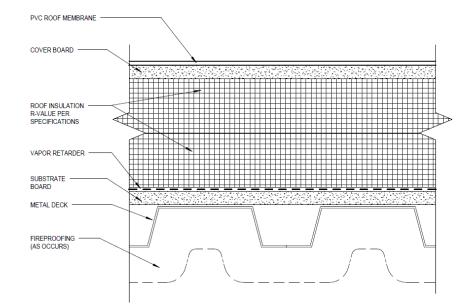


Figure 3 | Penthouse Roof Section (SmithGroupJJR)

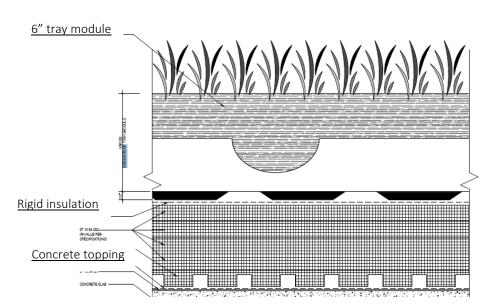
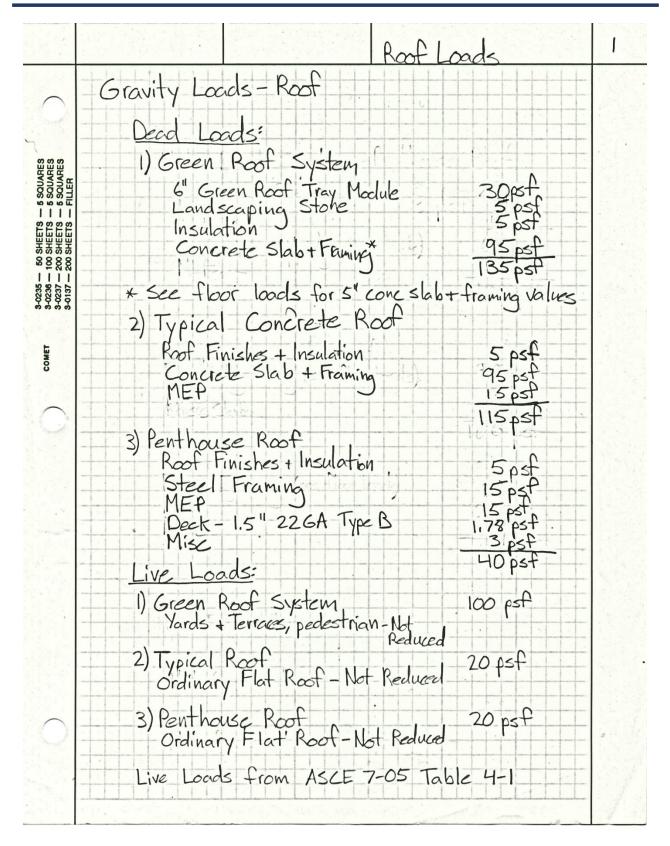
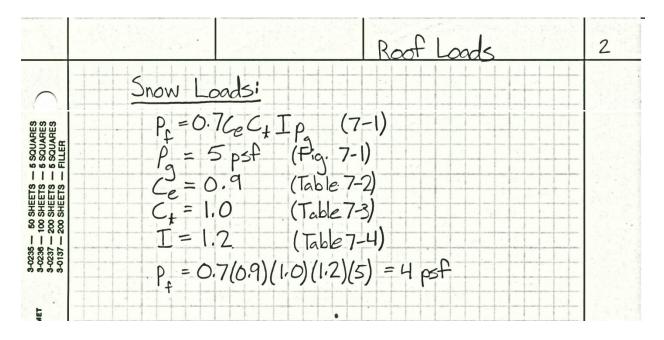
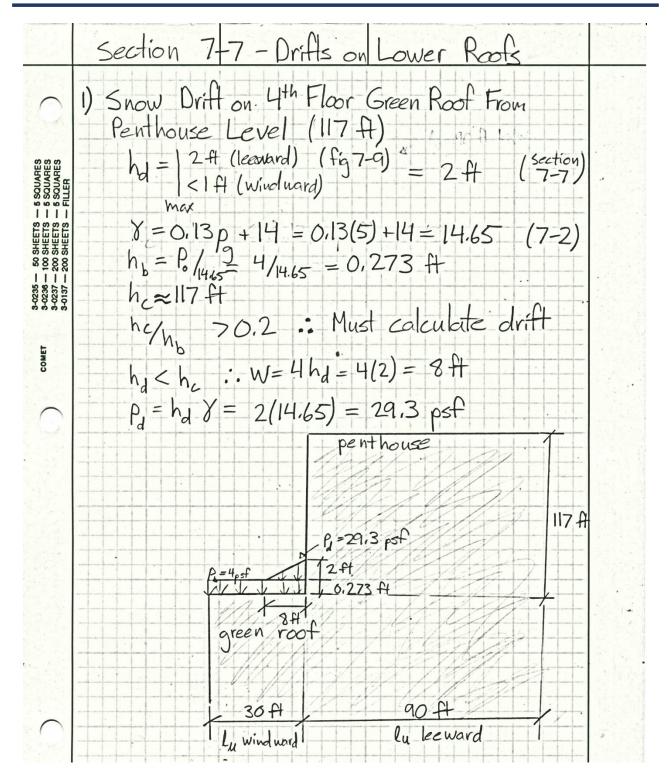



Figure 4 | Green Roof Section (SmithGroupJJR)




Load Type	Dead	Live
Typical Roof	115 psf	20 psf
		Not reduced
Penthouse Roof	40 psf	20 psf
	(50 psf SDL from structural drawings)	Not reduced
Green Roof	135 psf	100 psf
		Not reduced

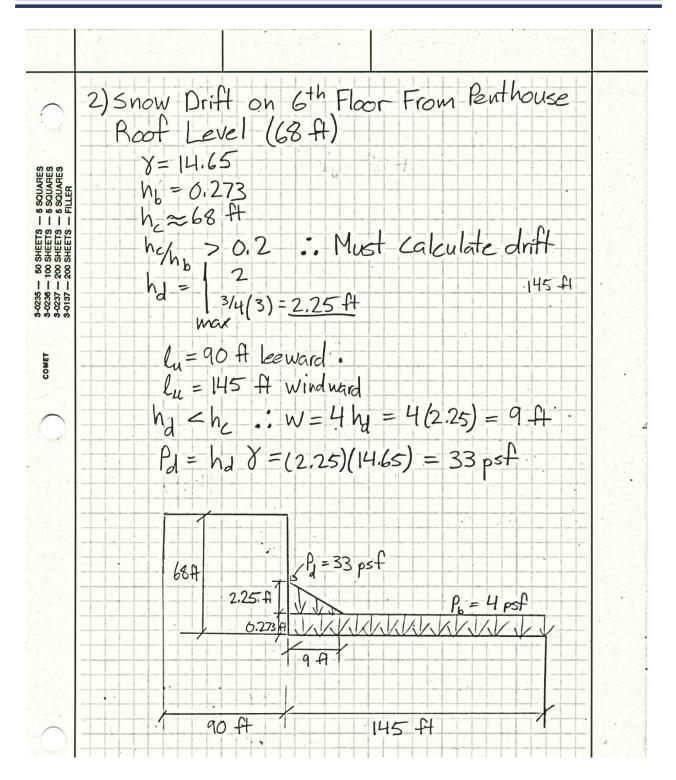

Below is a summary of the roof gravity dead and live load values determined in this section.

Table 2 | Roof Gravity Load Summary

A flat roof snow load for the building is calculated below, but will not control design. Snow drift will be considered for the green roof and lower 6th level roof due to the large height difference between these levels and the penthouse roof. The 6th level is designed for future expansion and may become an enclosed floor in the future. Floor live loads for the 6th level roof will likely control.

3.2 Floor Loads

Floor dead and live loads will be determined for both the bed tower and parking garage floor systems in this report. On the following page, Figures 6 shows typical details for the floor slabs under consideration for this report. Concrete floor slabs in the bed tower are typically 5 or 7 inches. All dead load values are based on the typical bay pictured in Figure 5.

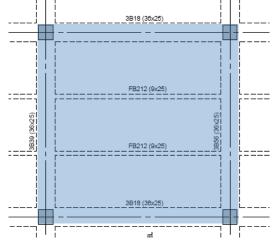


Figure 5 | Typical Bay from Third Floor Area D Floor Plan (Walter P. Moore)

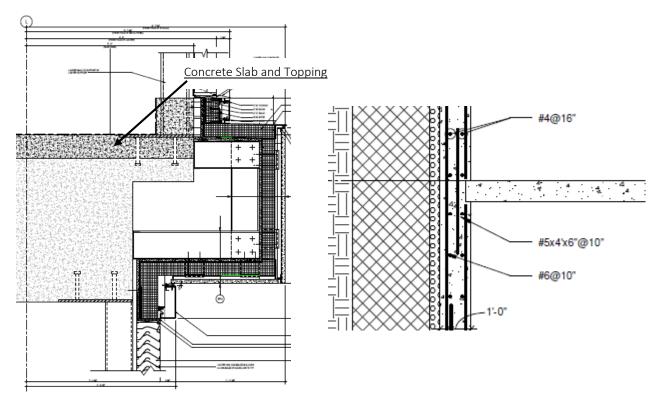
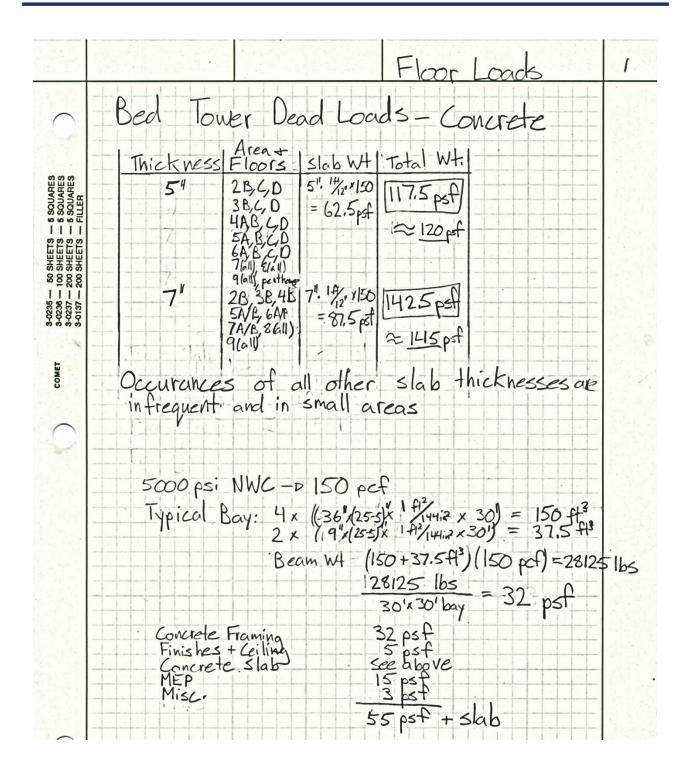
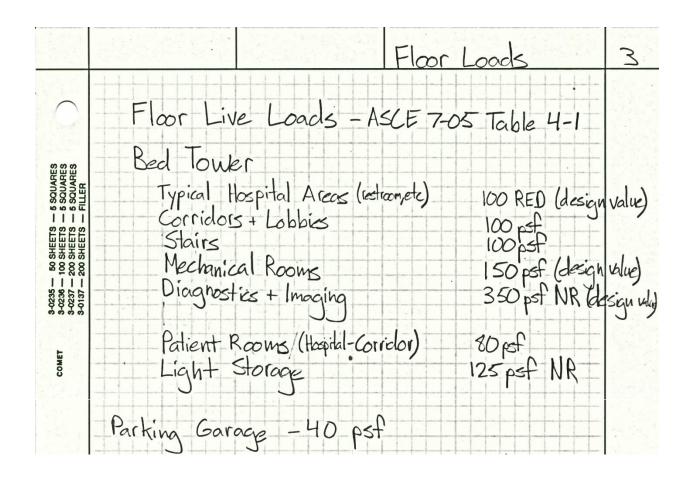
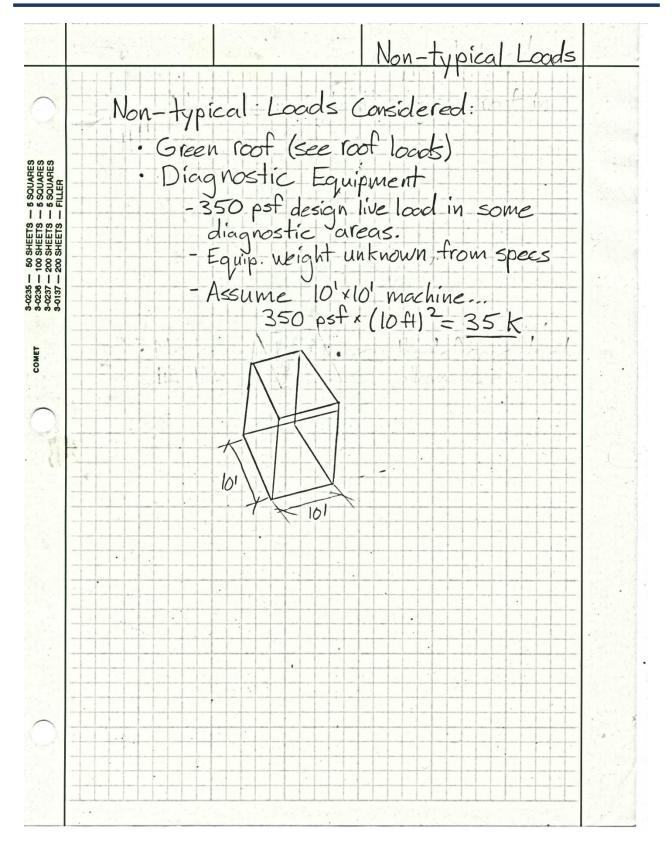




Figure 6 | Floor Section in Bed Tower (left, SmithGroupJJR) and Parking Garage (right, Walter P. Moore)



	Floor Loads 2	
	Bed Tower Dead Loads - Elevator Machine Room	
SOUARES SOUARES SOUARES SOUARES	3 1/2" LWC on 2" Deep 20GA Composite Dect Vulcraft Value: 57 psf	
3-0235 - 50 SHEETS - 5 SOU 3-0235 - 50 SHEETS - 5 SOU 3-0237 - 200 SHEETS - 5 SOU 3-0137 - 200 SHEETS - FILLEI 3-0137 - 200 SHEETS - FILLEI	Steel Framing IS psf Finishes + Ceiling S psf Metal Deck 57 psf MEP IS psf Elev. Equip 70 psf Misc. 3 psf 165 psf	
	Parking Garage Dead Loads Typical Depth = 8" NWC (structural plan notes) Slab Wt = 8". 1/2. 150 pcf = 100 psf	
	Concrete Slab. Post-Tension System Barked Cars Misc. (lighting, etc) 130 pst	

Floor Use	Dead		Live
Typical Hospital Areas	5" slab – 120 psf		100 psf – reduced
	7" slab – 145 psf		(design value)
Corridors + Lobbies	5" slab – 120 psf		100 psf
	7" slab – 145 psf		
Stairs	5" slab – 120 psf		100 psf
	7" slab – 145 psf		
Mechanical Rooms	5" slab – 120 psf	+ 200 K mech. equip	150 psf
	7" slab – 145 psf		
Diagnostics + Imaging	5" slab – 120 psf	+ 80 K diagnostic equip.	350 psf – not reduced
	7" slab – 145 psf		(design value)
Patient Rooms (Designed	5" slab – 120 psf		80 psf
as Hospital – Corridor)	7" slab – 145 psf		
Parking Garage	5" slab – 120 psf		40 psf
	7" slab – 145 psf		

Table 3 | Floor Gravity Loads Summary

3.3 Perimeter Loads

The building perimeter enclosure produces a linear dead load through its attachment to the main building structure. The Health Centre has three main enclosure systems: curtain wall, stucco panels, and metal panels. Figures 7-8 depict the methods of attachment for each system.

Each system has a different load path that is dependent on its connection to the structure. The curtain wall's framing system is connected to the main structure by a structural steel plate and embedded metal stud.

Loads transfer from the stucco wall via continuous light gauge angles attached to continuous light gauge zees. The light gauge zees are connected by a fiberglass thermal spacer clip to gypsum sheathing, which takes the load to the main structure via another light gauge zee.

A light gauge zee connects the metal wall panels to the main structure, and load is transferred through steel bolts.

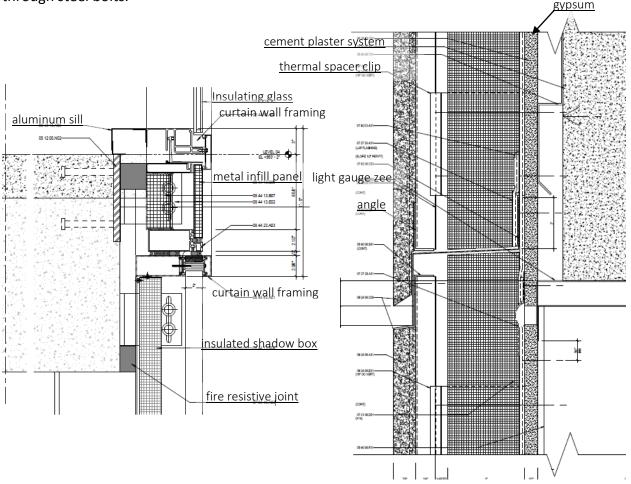


Figure 7 | Curtain Wall Connection Detail (left) and Stucco Panel Wall Envelope (right) from SmithGroupJJR

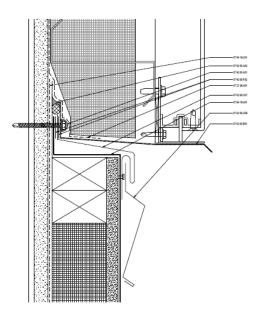
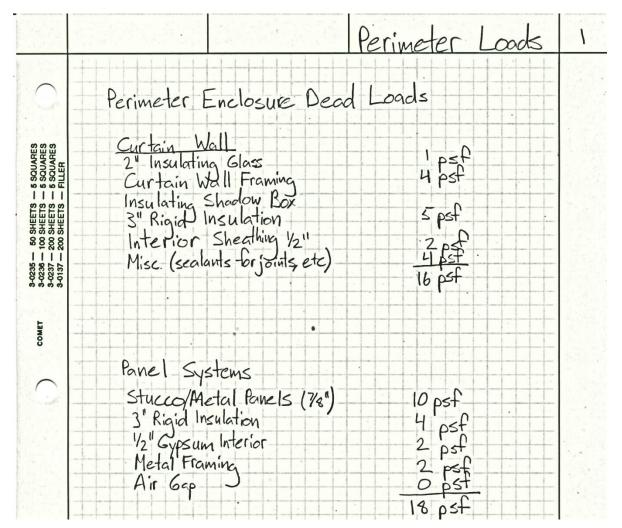



Figure 8 | Metal Panel Connection Detail (SmithGroupJJR)

VALENTINE | 17

4 | Wind Loads

The following section calculates wind loads perpendicular and parallel to The Health Centre using criteria from chapter 6 of ASCE 7-05 for a flexible building. Excel and hand calculations were used to determine load values and gust effect factors. Both building and parapet loads are included in this section.

4.1 Perpendicular Loads

_

Building Geometry

B =	421.25	ft
L =	285	ft
h =	166	ft
z _{bar} =	99.6	ft

Variables Used

Basic Wind Speed	V =	90	mph	(Figure 6-1)
Directionality Factor	K _d =	0.85		(Table 6-4)
Occupancy Category		IV		(Table 1-1)
Importance Factor	=	1.15		(Table 6-1)
Topographic Factor	K _{zt} =	1		(Walter P. Moore)
Exposure Category		В		(Walter P. Moore)

Calculation of K_z and q_z

 $q_z = 0.00256K_zK_{zt}K_dV^2I$

(6-15)

Story	Height (ft)	K _z - Case 1	K _z - Case 2	q _z - Case 1 (psf)	q _z - Case 2 (psf)
2	16	0.7	0.58	14.1886	11.7563
3	32	0.712	0.712	14.4318	14.4318
4	49	0.805	0.805	16.3169	16.3169
5	66	0.874	0.874	17.7155	17.7155
6	83	0.939	0.939	19.0330	19.0330
7	98	0.984	0.984	19.9451	19.9451
8	113	1.0225	1.0225	20.7255	20.7255
9	128	1.06	1.06	21.4856	21.4856
penthouse	143	1.096	1.096	22.2153	22.2153
roof/q _h	166	1.142	1.142	23.1477	23.1477

*Note: Only discrepency between Case 1 and 2 values occurs at 16 ft

Gust Effect Factor G_f

See pages 1-3 of wind calcs for detailed calculations and code references.

Natural Frequency	n ₁ =	0.437	Hz	(C6-15)
Resonant Response Factor	g _R =	3.987		(6-9)
Background & Wind Factor	g _v , g _Q =	3.4		(6-9)
Mean Hourly Wind	$V_{z,bar} =$	78.3	mph	(6-14)
Turbulence Length	L _{z,bar} =	462.45		(6-7)
Reduced Frequency	N ₁ =	2.581		(6-12)
Resonant Responcse Factor	R =	0.1958		(6-10)
Turbulence Intensity	Ι _z =	0.25		(6-5)
Background Response Factor	Q =	0.76		(6-6)
Flexible Gust Effect Factor	G _f =	0.8123		(6-8)

External Pressure Coefficient $\mathbf{C}_{\mathbf{p}}$

See pages 3 of wind calcs for detailed calculations.

	L/B =	0.6766		
	h/L=	0.5825		
	Θ=	< 10	degrees	
Windward Wall	C _p =	0.8		
Leeward Wall	C _p =	-0.5		
Side Wall	C _p =	-0.7		
Roof - 0 to h/2	C _p =	-0.9	-0.18	
Roof - h/2 to h	C _p =	-0.9	-0.18	
Roof - h to 2h	C _p =	-0.5	-0.18	
Roof - >2h	C _p =	-0.3	-0.18	

Design Wind Pressure P

$p = qG_fC_p - q_i(Gc_{pi})$	(6-19)						Net Pres	ssure (psf)
Location	z (ft)	q _z / q _h (psf)	Cp	G _f	q _z G _f Cp (psf)	GC _{pi}	q _z G _f C _p - q _h (+GC _{pi})	q _z G _f C _p - q _h (-GC _{pi})
Windward	16 - Case 1	14.1886	0.8	0.8123	11.3509	0.18	7.1843	15.5175
	16 - Case 2	11.7563	0.8	0.8123	9.4050	0.18	5.2384	13.5716
	32	14.4318	0.8	0.8123	11.5455	0.18	7.3789	15.7121
	49	16.3169	0.8	0.8123	13.0535	0.18	8.8869	17.2201
	66	17.7155	0.8	0.8123	14.1724	0.18	10.0058	18.3390
	83	19.0330	0.8	0.8123	15.2264	0.18	11.0598	19.3930
	98	19.9451	0.8	0.8123	15.9561	0.18	11.7895	20.1227
	113	20.7255	0.8	0.8123	16.5804	0.18	12.4138	20.7470
	128	21.4856	0.8	0.8123	17.1885	0.18	13.0219	21.3551
	143	22.2153	0.8	0.8123	17.7722	0.18	13.6057	21.9388
	166	23.1477	0.8	0.8123	18.5182	0.18	14.3516	22.6847
Leeward	All	23.1477	-0.5	0.8123	-11.5739	0.18	-15.7404	-7.4073
Side	All	23.1477	-0.7	0.8123	-16.2034	0.18	-20.3700	-12.0368
Roof (0'-83')	166	23.1477	-0.9	0.8123	-20.8329	0.18	-24.9995	-16.6663
Roof (83'-166')	166	23.1477	-0.9	0.8123	-20.8329	0.18	-24.9995	-16.6663
Roof (166'-332')	166	23.1477	-0.5	0.8123	-11.5739	0.18	-15.7404	-7.4073
Roof (> 332')	166	23.1477	-0.3	0.8123	-6.9443	0.18	-11.1109	-2.7777

(Figure 6-6)

4.2 Parallel Loads

Building Geometry

B =	285	ft
L =	421.25	ft
h =	166	ft
z _{bar} =	99.6	ft

Variables Used

Basic Wind Speed	V =	90	mph	(Figure 6-1)
Directionality Factor	K _d =	0.85		(Table 6-4)
Occupancy Category		IV		(Table 1-1)
Importance Factor	=	1.15		(Table 6-1)
Topographic Factor	K _{zt} =	1		(Walter P. Moore)
Exposure Category		В		(Walter P. Moore)

Calculation of K_z and q_z

 $q_z = 0.00256K_zK_{zt}K_dV^2I$

(6-15)				_	
Story	Height (ft)	K _z - Case 1	K _z - Case 2	q _z - Case 1 (psf)	q _z - Case 2 (psf)
2	16	0.7	0.58	14.1886	11.7563
3	32	0.712	0.712	14.4318	14.4318
4	49	0.805	0.805	16.3169	16.3169
5	66	0.874	0.874	17.7155	17.7155
6	83	0.939	0.939	19.0330	19.0330
7	98	0.984	0.984	19.9451	19.9451
8	113	1.0225	1.0225	20.7255	20.7255
9	128	1.06	1.06	21.4856	21.4856
penthouse	143	1.096	1.096	22.2153	22.2153
roof/q _h	166	1.142	1.142	23.1477	23.1477

*Note: Only discrepency between Case 1 and 2 values occurs at 16 ft

Gust Effect Factor G_f

See pages 6-7 of wind calcs for detailed calculations and code references.

Natural Frequency	n ₁ =	0.437	Hz	(C6-15)
Resonant Response Factor	g _R =	3.987		(6-9)
Background & Wind Factor	g _v , g _Q =	3.4		(6-9)
Mean Hourly Wind	V _{z,bar} =	78.3	mph	(6-14)
Turbulence Length	L _{z,bar} =	462.45		(6-7)
Reduced Frequency	N ₁ =	2.581		(6-12)
Resonant Responcse Factor	R =	0.1958		(6-10)
Turbulence Intensity	۱ _z =	0.25		(6-5)
Background Response Factor	Q =	0.76		(6-6)
Flexible Gust Effect Factor	G _f =	0.8123		(6-8)

External Pressure Coefficient $\mathbf{C}_{\mathbf{p}}$

See pages 7 of wind calcs for detailed calculations.

	L/B =	1.4781	
	h/L=	0.3941	
	Θ=	< 10	degrees
Windward Wall	C _p =	0.8	
Leeward Wall	C _p =	-0.4044	
Side Wall	C _p =	-0.7	
Roof - 0 to h/2	C _p =	-0.9	-0.18
Roof - h/2 to h	C _p =	-0.9	-0.18
Roof - h to 2h	C _p =	-0.5	-0.18
Roof - >2h	C _p =	-0.3	-0.18

Design Wind Pressure P

$p = qG_fC_p - q_i(GC_{pi})$	(6-19)						Net Pres	ssure (psf)
Location	z (ft)	q _z / q _h (psf)	Cp	G _f	q _z G _f Cp (psf)	GC _{pi}	q _z G _f C _p - q _h (+GC _{pi})	qzGfCp - qh(-GCpi)
Windward	16 - Case 1	14.1886	0.8	0.8123	11.3509	0.18	7.1843	15.5175
	16 - Case 2	11.7563	0.8	0.8123	9.4050	0.18	5.2384	13.5716
	32	14.4318	0.8	0.8123	11.5455	0.18	7.3789	15.7121
	49	16.3169	0.8	0.8123	13.0535	0.18	8.8869	17.2201
	66	17.7155	0.8	0.8123	14.1724	0.18	10.0058	18.3390
	83	19.0330	0.8	0.8123	15.2264	0.18	11.0598	19.3930
	98	19.9451	0.8	0.8123	15.9561	0.18	11.7895	20.1227
	113	20.7255	0.8	0.8123	16.5804	0.18	12.4138	20.7470
	128	21.4856	0.8	0.8123	17.1885	0.18	13.0219	21.3551
	143	22.2153	0.8	0.8123	17.7722	0.18	13.6057	21.9388
	166	23.1477	0.8	0.8123	18.5182	0.18	14.3516	22.6847
Leeward	All	23.1477	-0.4044	0.8123	-9.3609	0.18	-13.5275	-5.1943
Side	All	23.1477	-0.7	0.8123	-16.2034	0.18	-20.3700	-12.0368
Roof (0'-83')	166	23.1477	-0.9	0.8123	-20.8329	0.18	-24.9995	-16.6663
Roof (83'-166')	166	23.1477	-0.9	0.8123	-20.8329	0.18	-24.9995	-16.6663
Roof (166'-332')	166	23.1477	-0.5	0.8123	-11.5739	0.18	-15.7404	-7.4073
Roof (> 332')	166	23.1477	-0.3	0.8123	-6.9443	0.18	-11.1109	-2.7777

(Figure 6-6)

4.3 Parapet Loads

Building Geometry

B =	285	ft
L =	421.25	ft
h =	166	ft
z _{bar} =	99.6	ft

Variables Used

Basic Wind Speed	V =	90	mph
Directionality Factor	K _d =	0.85	
Occupancy Category		IV	
Importance Factor	=	1.15	
Topographic Factor	K _{zt} =	1	
Exposure Category		В	

(Figure 6-1)
(Table 6-4)
(Table 1-1)
(Table 6-1)
(Walter P. Moore)
(Walter P. Moore)

Calculation of K_z and q_z

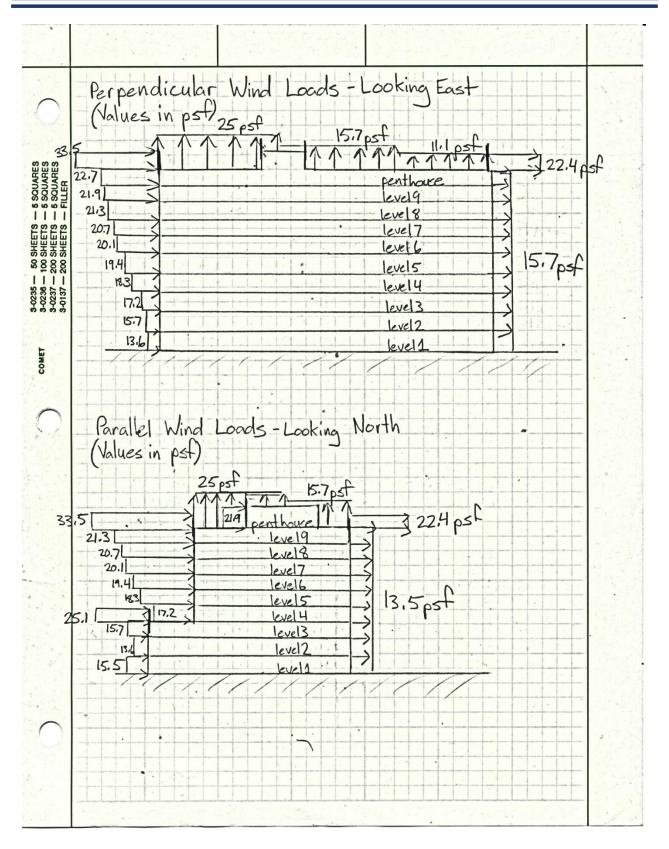
 $q_p = 0.00256K_zK_{zt}K_dV^2I$

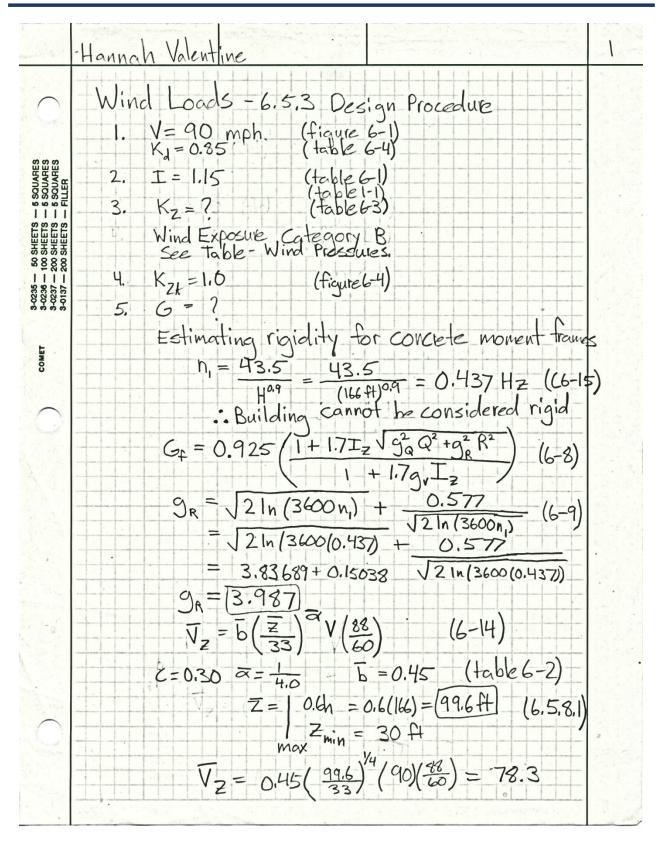
(6-15)					
Parapet	Height (ft)	K _z - Case 1	K _z - Case 2	q _p - Case 1 (psf)	q _p - Case 2 (psf)
Mech Roof	170	1.15	1.15	23.3099	23.3099
Green Roof	54	0.826	0.826	16.7426	16.7426
Penthouse	147	1.104	1.104	22.3775	22.3775
q _h	166	1.142	1.142	23.1477	23.1477

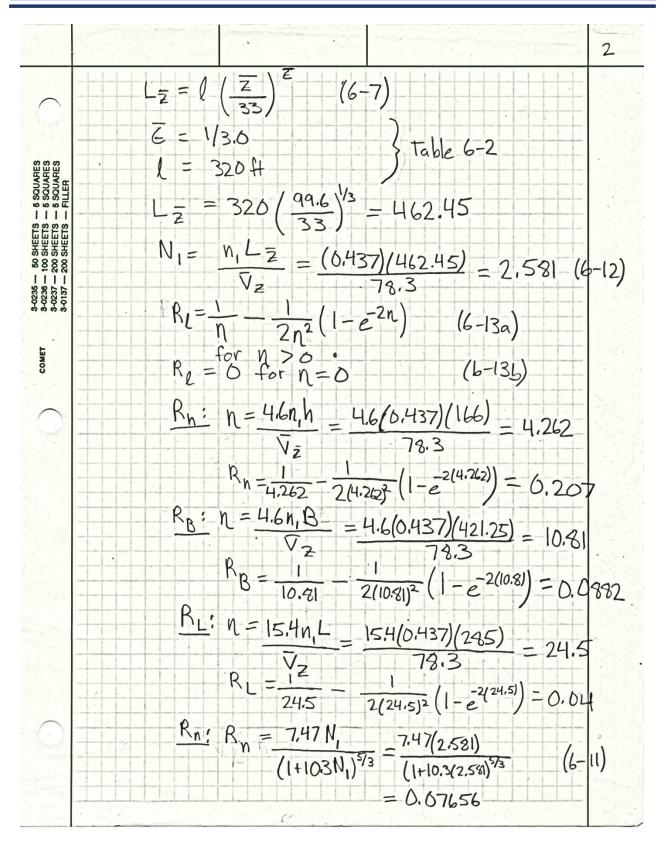
*Note Case 1 and 2 values are the same for all parapet types.

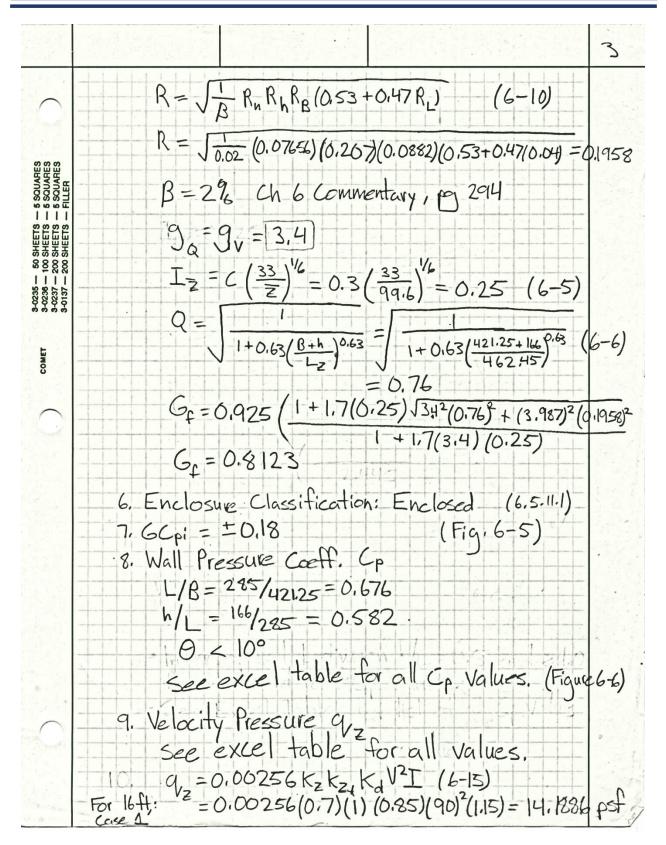
Design Wind Pressure P

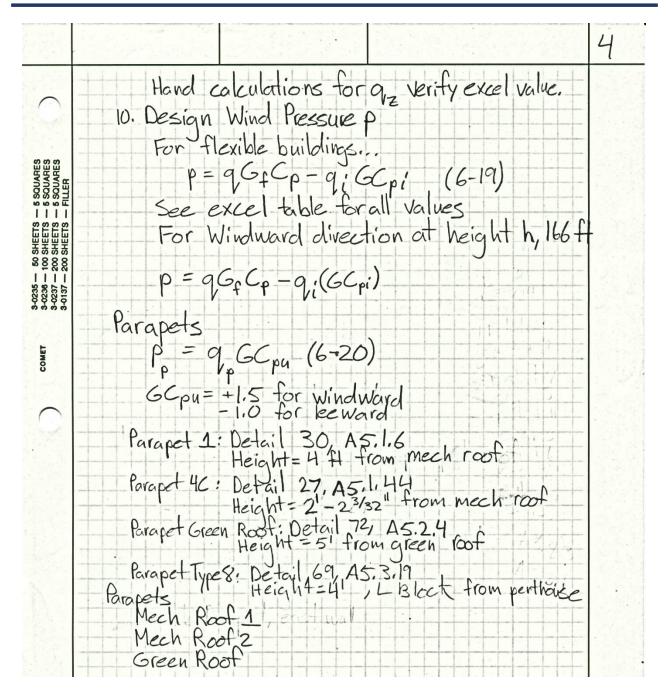
$p_p = q_p GC_{pu}$	(6-20)	(6-20) Net Pressure (psf)						
	Parapet	q _p (psf)	GC _{pu} - windward	Gc _{pu} - leeward	p _p - windward	p _p - leeward		
	Mech Roof	23.3099	1.5	-1	34.9648	-23.309856		
	Green Roof	16.7426	1.5	-1	25.1138	-16.74255744		
	Penthouse	22.3775	1.5	-1	33.5662	-22.37746176		

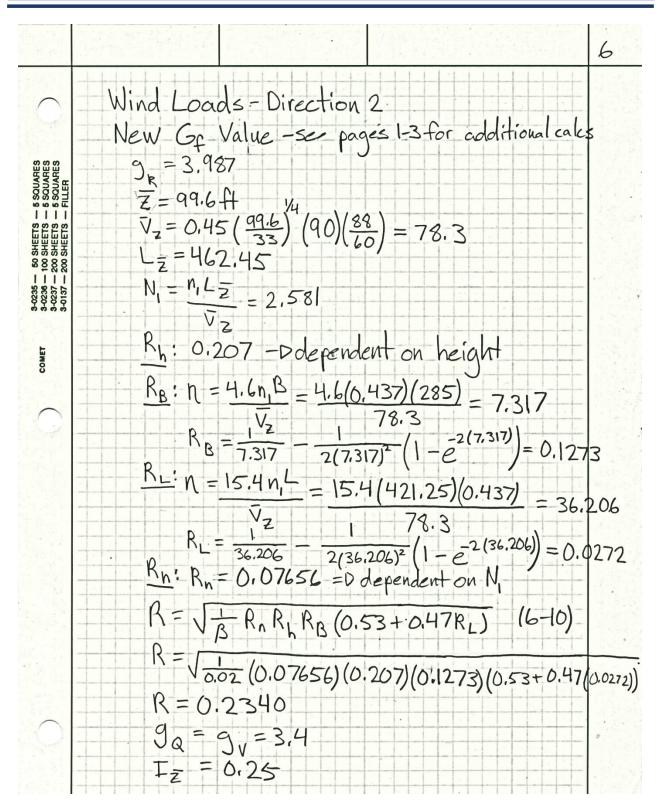

See pages 4 and 5 of hand calculations.

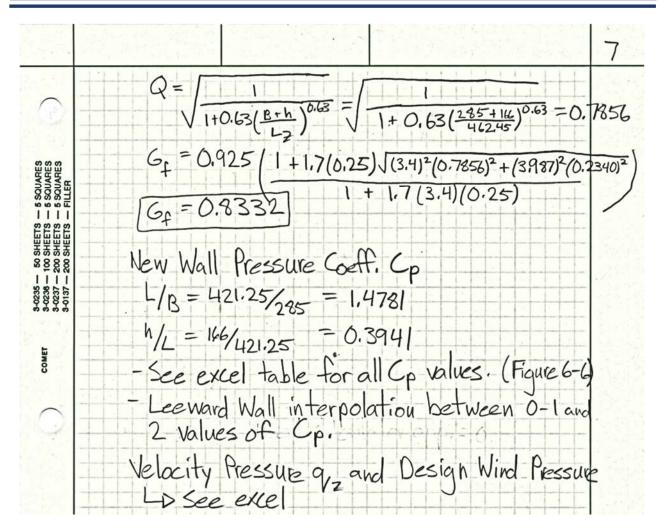

4.4 Summary and Hand Calculations

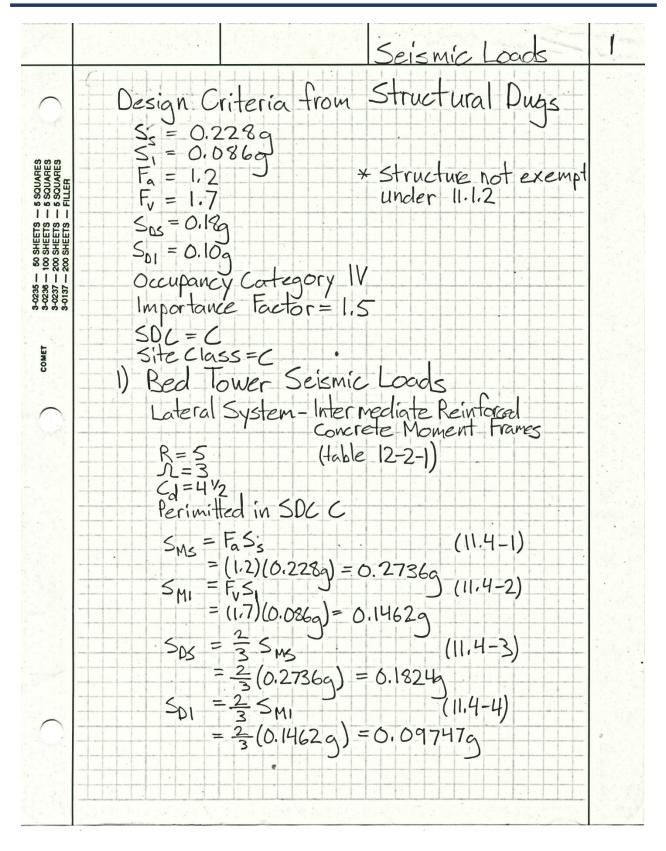

Below is a summary of base shear values for the perpendicular and parallel wind directions. On the following page, wind load diagrams summarize the loads on the building.

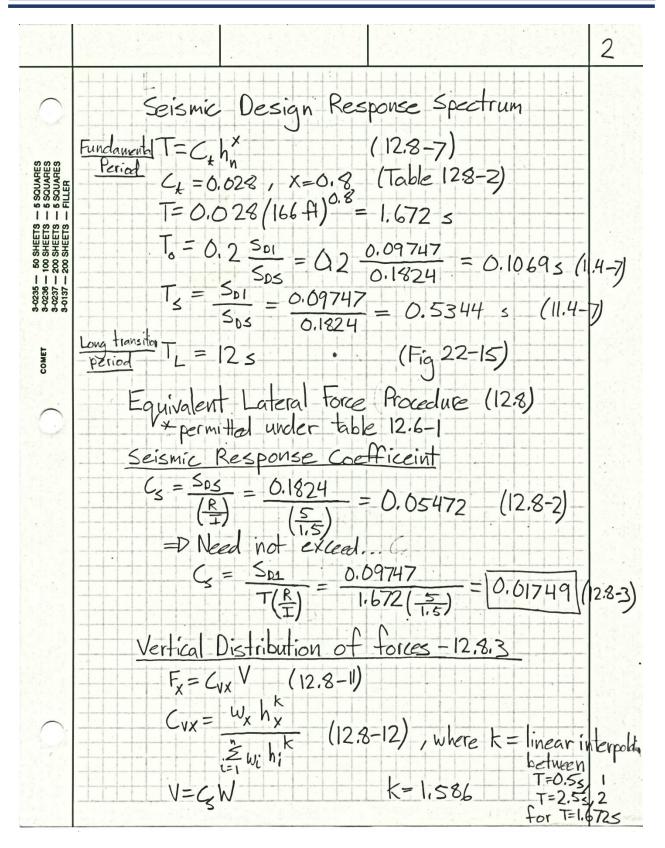

Level	Floor Height	Windward Pressure		Leeward Pressure		Length (ft)		Shear (K)	
	(ft)	Perpendicular	Parallel	Perpendicular	Parallel	Perpendicular	Parallel	Perpendicular	Parallel
2	16	15.51747249	15.51747249	15.74043633	13.5275162	421.25	285	210.6783054	132.445148
3	17	15.71205911	15.71205911	15.74043633	13.5275162	421.25	285	225.2391829	141.665742
4	17	17.22010545	17.22010545	15.74043633	13.5275162	421.25	285	236.0386798	148.972227
5	17	18.33897853	18.33897853	15.74043633	13.5275162	421.25	285	244.0512097	154.393167
6	15	19.39298941	19.39298941	15.74043633	13.5275162	421.25	285	221.9993339	140.735161
7	15	20.12268925	20.12268925	15.74043633	13.5275162	421.25	285	226.6101248	143.854628
8	15	20.74698801	20.74698801	15.74043633	13.5275162	421.25	285	230.5549125	146.523505
9	15	21.35507121	21.35507121	15.74043633	13.5275162	421.25	285	234.3972382	149.123061
penthouse	19	21.93883108	21.93883108	15.74043633	13.5275162	421.25	285	301.5754365	192.05027
pent. Roof	11.5	22.68474647	22.68474647	15.74043633	13.5275162	421.25	285	186.1459949	118.685691
					Base Shea	ar (k)	2317.290419	1468.4486	

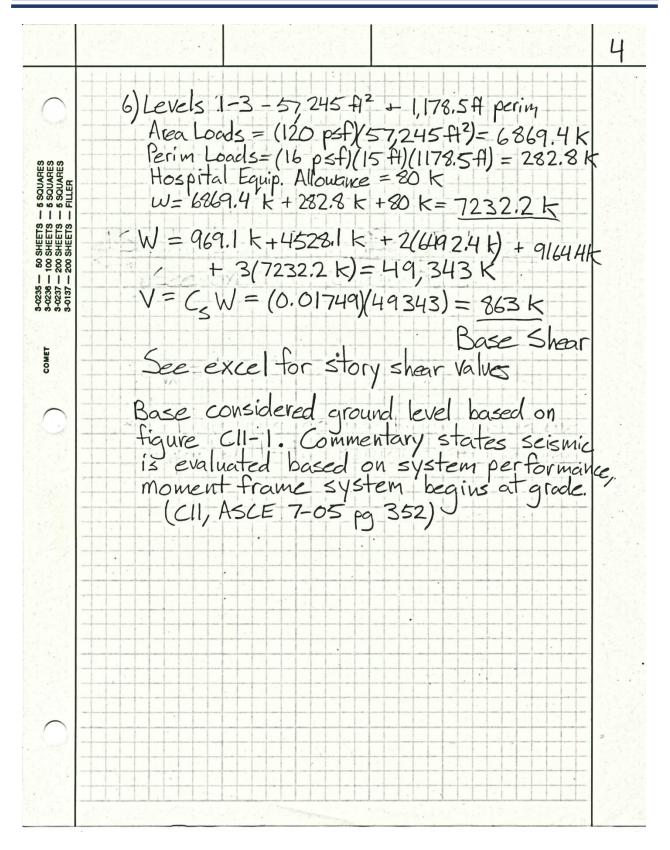

Total Base Shear Values









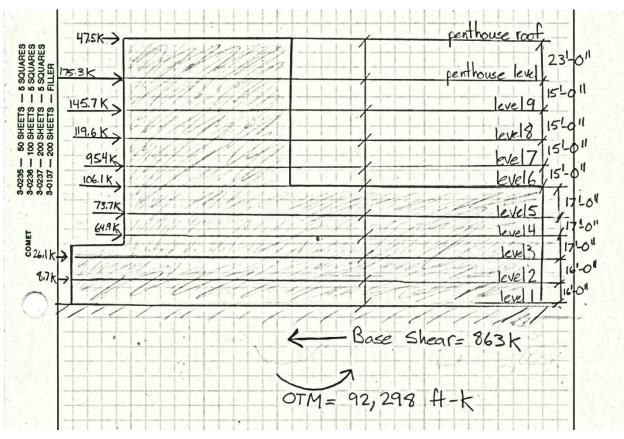

5 | Seismic Loads

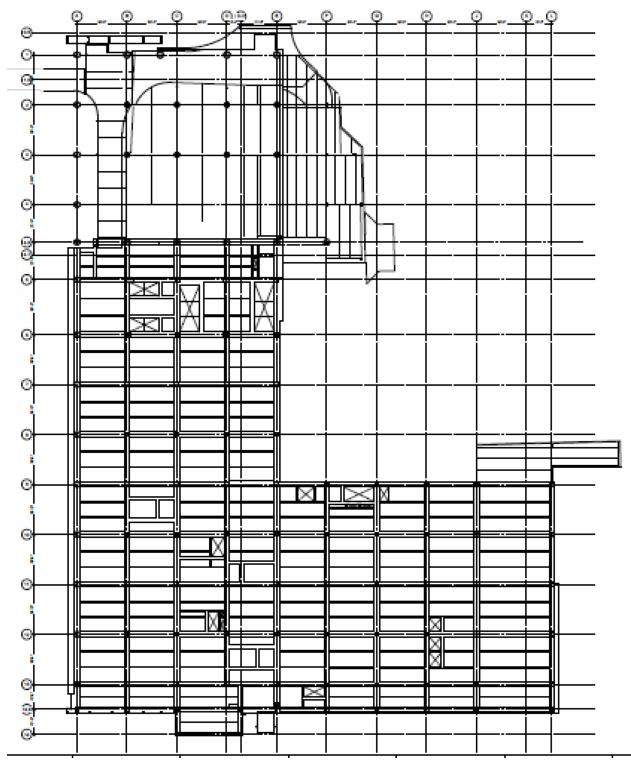
The following section calculates seismic loads for The Health Centre using the Equivalent Lateral Force (ELF) method provisions from ASCE 7-05 chapters 11 and 12.

Level	h _× (ft)	w _× (k)	k	w _x h _x ^k	C _{vx}	F _× (k)	h _x *F _x (ft-k)
Penthouse Roof	166	969.1	1.586	3217066.4	0.055075	47.5	7889.9
Penthouse							
Level	143	4528.1	1.586	11865306.6	0.203129	175.3	25067.9
Level 9	128	4487.5	1.586	9863691.3	0.168862	145.7	18653.2
Level 8	113	4487.5	1.586	8094441.2	0.138573	119.6	13513.5
Level 7	98	4487.5	1.586	6457865.8	0.110556	95.4	9350.1
Level 6	83	6492.4	1.586	7178986.3	0.122901	106.1	8803.3
Level 5	66	6492.4	1.586	4991165.3	0.085447	73.7	4866.9
Level 4	49	9164.4	1.586	4392937.5	0.075205	64.9	3180.2
Level 3	32	7232.2	1.586	1763755.1	0.030195	26.1	833.9
Level 2	16	7232.2	1.586	587495.7	0.010058	8.7	138.9
					Overturning	92297.8	

Below in Table 4 are values for Seismic Story Shear V_x (12.8.4). The corresponding story and floor forces are depicted in the diagram in Figure 8.

Table 4 | Seismic Story Forces




Figure 8 | Seismic Story Forces Diagram

6 | Appendix A

Design building loads from the load key plan on structural documentation are listed in Table 5. The table includes superimposed dead loads, live loads, and concentrated live loads. Superimposed dead loads do not account for the total dead load of the structure.

LOAD	SENSITIVE			
OCCUPANCY	SUPER IMPOSED DEAD LOAD (PSF)	UNIFORM LIVE LOAD (PSF)	CONCENTRATED LIVE LOAD (LB)	EQUIPMENT VIBRATION CRITERIA
AHU 1 - AIR HANDLING UNIT	15CMEP + 60TOPPING = 75	150 NR	15,000 LBS	-
CEPR1 = CENTRAL ENERGY PLANT ROOF	SOCMEP	40 NR	3,000	-
CEPR2 = CENTRAL ENERGY PLANT ROOF	80CMEP + 80RAMP = 160	40 NR	3,000	-
CT = COOLING TOWER	50	150 NR	52,800 LBS (EACH CELL) THREE CELL LOCATIONS	-
DROP = DROP OFF AREA	300	100 NR	2,000	-
EXT1 = EXTERIOR PLAZA ALONG CLIFTON RD	230	100 NR	2,000	-
EXT2 = EXTERIOR SOIL ALONG GRID 13.5	1,180	200 NR	2,000	-
HOS1 = TYPICAL HOSPITAL AREAS	15	100 RED	2,000	8,000 MIPS @ 85 PPM
HOS2 = HOSPITAL DIAGNOSTICS AND IMAGING	15CMEP + 60TOP = 75	350 NR	106 KIPS OR EQUIP, WGT	1000 MIPS @ 100 PPM
HOS 3 = HOSPITAL DIAGNOSTICS AND SURGICAL SUITES	15	100 RED	2,000 OR EQUIP. WGT	4,000 MIPS @ 85 PPM
KIT – KITCHEN	15CMEP + 40TOP + 40CMU = 95	150 NR	2,000	-
LD - LOADING DOCK	15	250 NR	-	min
MEC = MECHANICAL/ELECTRICAL ROOMS	15CMEP + 60TOPPING = 75	150 NR	2,000 OR EQUIP. WGT	60 TOPPING NOT APPLIED AT LEVEL 3 PNELIMATIC TURE BOOM
MRIACC	TYPICAL SDE FLOOR LOADS PER FINAL USE	150 NR	- ,	- minin
MU1 = MIXED USE 1	15CMEP + 40CMU- 55	100 RED	2,000	-
MU2 = MIXED USE 2	15CMEP + 5 FIN = 20	100 RED	2,000	-
MU3 = MIXED USE 3	15CMEP + 40 TOP + 40CMU = 95	100 RED	2,000	-
PAT = TYPICAL PATIENT ROOMS	15	80 RED (+)	1,000	-
PK1 = TYPICAL PARKING	5	40 NR	3,000	-
PK2 = PARKING WITH CURB ALLOWANCE	5CMEP + 40TOP = 45	40 NR	3,000	-
PUB1 = PUBLIC AREAS, LOBBIES, AND CORRIDORS	15	100 NR	2,000	-
PUB2 - PUBLIC AREAS, LOBBIES, AND CORRIDORS w/ THICK SET TILE/TOPPING	15CMEP + 25TILE = 40	100 NR 🕢	2,000	-
RF1 - ROOF WITH INSULATED CONCRETE TOPPING	15CMEP + 25TOP + 10ROOF = 50	20 NR	-	-
RF2 - GREEN ROOFOUTDOOR PUBLIC AREA	15CMEP + 25TOP + 10ROOF + 50GREEN ROOF/PAVERS = 100	100 NR	-	-
RF3 – TYPICAL ROOF	25	20 NR	-	-
RFPH = PENTHOUSE ROOF	25CMEP + 25 ROOF = 50	20 RED	-	-
RR = RESTROOM	15CMEP + 25FIN = 40	100 RED	-	-
STA – METAL STAIR	60	100 NR	-	-
STO = LIGHT STORAGE	15	125 NR	2,000	-
TVROOF = TRANSFORMER VAULT ROOF	-	-	-	-

Table 5 | Load Key Plan Values

Figures 9-11 show different floorplate shapes typical for The Health Centre.

Figure 9 | Typical Structural Floor Plan for Floors 1-3 (Walter P. Moore)

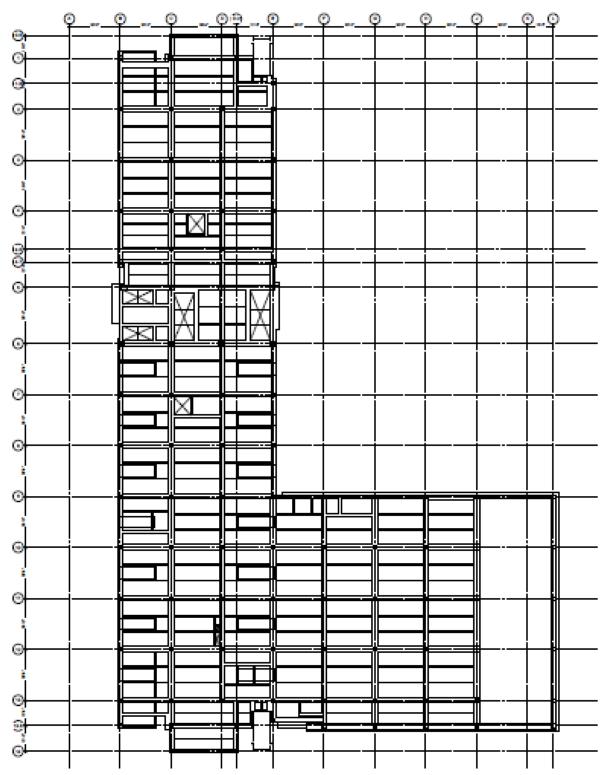


Figure 10 | Typical Structural Floor Plan for Floors 5-6 (Walter P. Moore)

Figure 11 | Typical Structural Floor Plan for Floors 7-9 (Walter P. Moore)